Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract JWST observations have recently begun delivering the first samples of Lyαvelocity profile measurements atz> 6, opening a new window into the reionization process. Interpretation ofz≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyαprofile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz≳ 6. To overcome this shortcoming, we have obtained resolved (R∼ 3900) Lyαspectroscopy of 42 galaxies atz= 2.1–3.4 with similar properties as are seen atz> 6. We quantify a variety of Lyαprofile statistics as a function of [Oiii]+Hβequivalent width (EW). Our spectra reveal a new population ofz≃ 2–3 galaxies with large [Oiii]+HβEWs (>1200 Å) and a large fraction of Lyαflux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M⊙) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii] emitters show weaker Lyαthat is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyαemitters should be strongly attenuated atz≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz≃ 5. We compare these expectations against a new database ofz≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec.more » « less
- 
            Abstract Using deep near-infrared Keck/MOSFIRE observations, we analyze the rest-optical spectra of eight star-forming galaxies in the COSMOS and GOODS-N fields. We reach integration times of ∼10 hr in the deepest bands, pushing the limits on current ground-based observational capabilities. The targets fall into two redshift bins, of five galaxies atz∼ 1.7 and three galaxies atz∼ 2.5, and were selected as likely to yield significant auroral-line detections. Even with long integration times, detection of the auroral lines remains challenging. We stack the spectra together into subsets based on redshift, improving the signal-to-noise ratio on the [Oiii]λ4364 auroral emission line and, in turn, enabling a direct measurement of the oxygen abundance for each stack. We compare these measurements to commonly employed strong-line ratios alongside measurements from the literature. We find that the stacks fall within the distribution ofz> 1 literature measurements, but a larger sample size is needed to robustly constrain the relationships between strong-line ratios and oxygen abundance at high redshift. We additionally report detections of [Oi]λ6302 for nine individual galaxies and composite spectra of 21 targets in the MOSFIRE pointings. We plot their line ratios on the [Oiii]λ5008/Hβversus [Oi]λ6302/Hαdiagnostic diagram, comparing our targets to local galaxies and Hiiregions. We find that the [Oi]/Hαratios in our sample of galaxies are consistent with being produced in gas ionized byα-enhanced massive stars, as has been previously inferred for rapidly forming galaxies at early cosmic times.more » « less
- 
            ABSTRACT JWST has recently sparked a new era of Lyα spectroscopy, delivering the first measurements of the Lyα escape fraction and velocity profile in typical galaxies at z ≃ 6−10. These observations offer new prospects for insight into the earliest stages of reionization. But to realize this potential, we need robust models of Lyα properties in galaxies at z ≃ 5−6 when the IGM is mostly ionized. Here, we use new JWST observations from the JADES and FRESCO surveys combined with VLT/MUSE and Keck/DEIMOS data to characterize statistical distributions of Lyα velocity offsets, escape fractions, and EWs in z ≃ 5−6 galaxies. We find that galaxies with large Lyα escape fractions (>0.2) are common at z ≃ 5−6, comprising 30 per cent of Lyman break selected samples. Comparing to literature studies, our census suggests that Lyα becomes more prevalent in the galaxy population towards higher redshift from z ∼ 3 to z ∼ 6, although we find that this evolution slows considerably between z ∼ 5 and z ∼ 6, consistent with modest attenuation from residual H i in the mostly ionized IGM at z ≃ 5−6. We find significant evolution in Lyα velocity profiles between z ≃ 2−3 and z ≃ 5−6, likely reflecting the influence of resonant scattering from residual intergalactic H i on the escape of Lyα emission near line centre. This effect will make it challenging to use Lyα peak offsets as a probe of Lyman continuum leakage at z ≃ 5−6. We use our z ≃ 5−6 Lyα distributions to make predictions for typical Lyα properties at z ≳ 8 and discuss implications of a recently discovered Lyα emitter at z ≃ 8.5 with a small peak velocity offset (156 km s−1).more » « less
- 
            Abstract We present ultradeep Keck/MOSFIRE rest-optical spectra of two star-forming galaxies atz= 2.18 in the COSMOS field with bright emission lines, representing more than 20 hr of total integration. The fidelity of these spectra enabled the detection of more than 20 unique emission lines for each galaxy, including the first detection of the auroral [Oii]λλ7322, 7332 lines at high redshift. We use these measurements to calculate the electron temperature in the low-ionization O+zone of the ionized interstellar medium and derive abundance ratios of O/H, N/H, and N/O using the direct method. The N/O andα/Fe abundance patterns of these galaxies are consistent with rapid formation timescales and ongoing strong starbursts, in accord with their high specific star formation rates. These results demonstrate the feasibility of using auroral [Oii] measurements for accurate metallicity studies at high redshift in a higher-metallicity and lower-excitation regime previously unexplored with the direct method in distant galaxies. These results also highlight the difficulty in obtaining the measurements required for direct-method metallicities from the ground. We emphasize the advantages that the JWST/NIRSpec instrument will bring to high-redshift metallicity studies, where the combination of increased sensitivity and uninterrupted wavelength coverage will yield more than an order of magnitude increase in efficiency for multiplexed auroral-line surveys relative to current ground-based facilities. Consequently, the advent of JWST promises to be the beginning of a new era of precision chemical abundance studies of the early universe at a level of detail rivaling that of local galaxy studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available